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ABSTRACT
E�ciency of large-scale learning is a hot topic in both academic and

industry. �e stochastic gradient descent (SGD) algorithm, and its

extension mini-batch SGD, allow the model to be updated without

scanning the whole data set. However, the use of approximate

gradient leads to the uncertainty issue, slowing down the decreasing

of objective function. Furthermore, such uncertainty may result

in a high frequency of meaningless update on the model, causing

a communication issue in parallel learning environment. In this

work, we develop a batch-adaptive stochastic gradient descent (BA-
SGD) algorithm, which can dynamically choose a proper batch size

as learning proceeds. Particularly on the basis of Taylor extension

and central limit theorem, it models the decrease of objective value

as a Gaussian random walk game with rebound. In this game, a

heuristic strategy of determining batch size is adopted to maximize

the utility of each incremental sampling. By evaluation on multiple

real data sets, we demonstrate that by smartly choosing the batch

size, the BA-SGD not only conserves the fast convergence of SGD

algorithm but also avoids too frequent model updates.

1 INTRODUCTION
E�ciency of large-scale learning is a hot topic in both academic

and industry. Usually for di�erentiable objective function, gradient

descent algorithm is applied to train a model. However, for a large-

scale data, there is a high time cost in scanning the whole dataset

to calculate the gradient in one iteration [4]. To solve this problem,

stochastic gradient descent (SGD) and its extension mini-batch SGD
become alternative learning algorithms and have been widely used.

�e core idea of SGD is to approximate the gradient by a single

data instance. To reduce the uncertainty of approximation, mini-

batch SGD uses a batch of instances, where the batch size is a

predetermined variable and is kept constant during learning. Many
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works focus on accelerating the SGD via adjusting learning rate [10,

25, 38], modifying approximate gradient [26, 28], averaging learned

parameters [27] and parallelism [14, 23, 29, 31, 39].

In this work, we focus on how to dynamically determine the

batch size during learning process. �e approximate gradient can

be treated a random variable with some degree of uncertainty.

Intuitively when the uncertainty degree is low, a small batch size

is preferred. On the other hand, if the uncertainty degree is high,

a larger batch size should be used. �e challenge is that there

lacks a way of quantifying such uncertainty. Neither is there a

strategy to determine a proper batch size with regarding to di�erent

uncertainty degrees.

To address this problem, we propose models for both approx-

imate derivative and the learning process. With the support of

Taylor expansion and Central Limit �eorem, we quantify the noise

(uncertainty degree) with a Gaussian distribution. Furthermore, the

learning process is then modeled as a random walk game with a

Gaussian dice. Under such game se�ing, we discuss the limitation

of mini-batch SGD in learning and describe a heuristic strategy of

allocating batch under di�erent situations, aiming at maximizing

the e�ciency of decreasing objective function value. Combining

this strategy with SGD learning algorithm, we develop the Batch-
adaptive SGD (BA-SGD) algorithm. Via evaluation on multiple real

data sets, we demonstrate that our BA-SGD algorithm combines

the advantage of mini-batch SGD and gradient descent learning

algorithm and achieves the best performance.

In summary, the contributions of this work are as below:

• We model the individual derivative as a random variable

that consists of a constant (real global derivative) plus

a zero-mean noise term. By applying the central limit

theorem, the sample gradient can thus be modeled as a

normal distribution whose mean is the real gradient and

the variance is the noise variance over batch size.

• We model the learning process as a random walk game

with Gaussian dice, which helps reveal the limitation of

mini-batch SGD during learning.

• We propose a Batch-adaptive SGD algorithm that adopts a

heuristic strategy of determining batch in each iteration,

aiming to maximize the e�ciency of decreasing objective

value with scanned training instances.
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• We conduct experiments on multiple real data sets, demon-

strating our method’s be�er performance with regarding to

i)fast convergence rate and ii) less frequent model update.

�e rest of the paper is organized as follows. Section 2 gives

a literature review of related work. Section 3 to 4 describes the

models of stochastic derivative and learning process. Section 5

describes details of our proposed BA-SGD algorithm. Section 6

displays the experimental results on both real and synthetic data.

Section 7 concludes this work and provides future work.

2 RELATEDWORK
E�ciency of learning algorithm is an important task in machine

learning, especially in scenario of large-scale data. For optimizing

algorithms based on gradient, there are generally four directions,

i.e., parallelism, stochastic, learning rate and variance reduction, of

which all are sometimes combined with each other.

In large-scale data learning, it is found that the bo�leneck lies

in the scan of the whole data set to compute the gradient [4]. A

straightforward way is thus to parallelize this part. Due to the

parallel framework MapReduce [8] and the corresponding open

source version Hadoop [11], many machine learning libraries, such

as Mahout [12], Spark [37], MLI [33], etc. are developed. Also

there are independent works such as GraphLab [22], DistBelief [7],

TensorFlow [1] and other parameter-server-based designs [2, 16, 19].

Instead of parallel framework, another method, namely alternating
direction method of multipliers (ADMM) [13, 15], is to transform the

original optimization problem into one that is easily parallelized.

Examples of its application in machine learning can be found in [5].

In [6], Chen et. al. extends the original two-block form to multiple

blocks.

To avoid scanning the whole data set to compute the gradient,

stochastic gradient descent (SGD) and its variant mini-batch SGD
approximate this value by randomly selecting a single or multiple

data example(s) from the whole data set. Particularly the batch

size of mini-batch SGD is a predetermined constant. To accelerate

SGD’s speed, momentum [28] and Nesterov [26] are applied to

modify the gradient. Works [14, 23, 29, 31, 39] studied the SGD

implementation in parallel environment. In [20], Li et. al. proposed

an update mini-batch strategy which adds a conservative penalty

when updating parameters for each round. �e aim is to retain

small communication cost with large batch size but at the same

maintains a good convergence rate in parallel environment.

�ere are a bunch of works studying the learning rate. Work [4]

mentioned second-order gradient descent, which sets the learning

rate to be the inverse of the objective function’s Hessian matrix. It

is claimed to achieves quadratic convergence [9]. Aslo in [4], the

author proposed to make the learning rate of SGD decrease as the

reverse of iteration number, as [25] shows this is the decreasing

speed of error. Duchi [10] et. al. proposed Adagrad algorithm

which decreases the learning rate based on the sum of all previous

gradients. Other extensions include AdaDelta [38] and Adam [18].

�e former one introduced a time-decay variable for Adagrad while

the la�er one combines momentum and AdaDelta.

Finally, a line of works focus on reducing SGD’s variance caused

by adoption of sample gradient. One major e�ort is to adjust/smooth

the calculated stochastic gradient with historical ones, e.g., stochas-

tic average gradient (SAG) [30], stochastic dual coordinate ascent

(SDCA) [32], stochastic variance reduced gradient (SVRG) [17] and

proximal stochastic gradient [35]. Another trial is to adopt non-

uniform sampling strategies when estimating gradient, as proposed

in [34].

Di�erent from these previous works, we focus on studying how

to automatically choose a good batch size during learning process.

By modeling the stochastic derivative and the learning process, we

propose a heuristic strategy of allocating batch against di�erent

situations of uncertainty. �us our work can be easily combined

with existing works about parallelism and learning rate.

3 MODEL OF STOCHASTIC DERIVATIVE
In this section we starts with a brief review of gradient descent

learning algorithm and then propose our model of stochastic de-

rivative used in SGD. Before moving forward, we summarize all

symbols used in this work in Table 1 for easy reference.

3.1 Preliminary
�e process of model training is an optimizing (minimization) prob-

lem. Mathematically, given a labeled data set X and a de�ned

objective function F : Rd → R, the goal is to �nd a proper param-

eter con�guration
®θ so that the objective value is minimized, i.e.,

®θ∗ = arg min ®θ F(
®θ |X).

It is usually assumed that each individual instance of the data set

is independent of each other. �us, the objective function can

be wri�en as the average of sub-objective ones, i.e., F( ®θ |X) =
1

|X |

∑
xi ∈X Gi ( ®θ )1.

In most problems, the objective function is (or exactly, purposely

de�ned to be) di�erentiable. And the gradient descent algorithm can

be used to learn the optimal parameters. �e algorithm initializes

the model with random parameter values and iteratively updates

the model with gradients. Formally, let f ®θ : Rd → Rd denote

the gradient (global derivative) and the gi
®θ

: Rd → Rd denote the

individual instance gradient (local derivative), the update can be

represented as the equation below.

®θ ′ = ®θ − η · f ®θ =
®θ − η ·

∑
xi ∈X gi

®θ
|X|

(1)

Here the η is de�ned as learning rate, whose value initially ranges

from 0.01 to 0.1 and will be decreased if the objective value is

observed to increase a�er parameter update.

For large scale learning problem, scanning the whole data set to

compute the di�erential is quite time-consuming. Alternatively, for

each iteration a subset (also known as batch) {Y ⊂ X||Y| << |X|, }

is randomly sampled to calculate the approximate derivative, i.e.,

f ®θ ≈
ˆf ®θ =

∑
yj ∈Y gj

®θ
|Y |

. �is method is known as Stochastic Gradient
Descent (SGD). Although the learning e�ciency is improved, one

issue of SGD is hard to determine when to decrease the learning

rate. Conventional metric of objective value change does not work

1
To avoid over-�t, there is usually a data-independent regularization function. In

this case, it is easy to transform to the focused form. For instance, h( ®θ ) = h( ®θ |X) =
1

|X|

∑
x∈X h( ®θ |x) · |X |
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Table 1: List of Symbols

Symbol Description

X,Y Data set and its random subset

d Dimension of model parameters

®θ : Rd Vector of model parameters

η Learning rate or moving speed in Random Walk game

F : Rd → R Objective function on whole data set

f ®θ : Rd → Rd Partial derivative of function F

Gi : Rd → R Sub objective function on single data sample xi ∈ X
gi
®θ

: Rd → Rd Partial derivative of function Gi

®ξi ≡def g
i
®θ
− f ®θ Derivative di�erence between an individual instance and the whole data set

®εY ≡def

∑
yj ∈Y

®ξ j
|Y |

Average of sampled individual derivative di�erence

S∗, S, st State in Random Walk game

µt ,σ
2

t �e mean and variance of Gaussian dice in Random Walk game at t th
round

m investment in Random Walk game

Estm (st+1) Expected state of time t + 1 given current state st and investmentm

any more, because now the ”objective value” is also approximate

based on the sampled batchY and the increase or decrease could be

ascribed to the estimation inaccuracy of either gradient or objective

value itself. A common solution is to start with an even smaller

learning rate and keep it constant. Furthermore, there is work [4]

suggesting decrease the learning rate as the speed ofO(T−1), where

T is the total number of iterations so far.

3.2 Stochastic Derivative
Empirical studies reveal that learning with SGD leads to the �uc-

tuation of objective value, especially in later training stage. We

may use the concept of individual derivative di�erence to explain it.

Formally, let
®ξi ∈ R

d
denote the di�erence between an individual

instance’s gi
®θ

and the real one f ®θ . �e sum of them is equal to zero

vector, i.e.,

∑
xi ∈X

®ξi = 0. In SGD, the approximate derivative can

thus be wri�en to the following equation.

ˆf ®θ =

∑
yj ∈Y g

j
®θ

|Y|
=

∑
yj ∈Y (f ®θ +

®ξ j )

|Y|
= f ®θ +

∑
yj ∈Y

®ξ j

|Y|
(2)

�e second term

∑
yj ∈Y

®ξ j
|Y |

can be treated as a random variable

depending on the randomly sampled batch Y. As Central Limit
�eorem (CLT) points out, it satis�es a multi-dimension normal

distribution N(0, Σ
|Y |
), where Σ is the covariance matrix of

®ξi .

As can be seen from Equation (2), the estimation of gradient is

a�ected by the scale of the “noise” variance. Take a one-dimension

case as an example. Suppose the variance is constantly at scale of 1.

At early stage of learning, the real gradient may be at scale of 10. In

this case, the estimation is quite close to real one and the objective

value will decrease rather quickly. However, as learning moves

forward and the real gradient is decreasing, the impact becomes

larger. If the gradient is at the scale of 1 or smaller, the estimated

one is thus dominated by the noise term and may be completely

reversed to real one. �is scenario explains the high �uctuation in

learning with SGD.

Another point is that the variance is correlated with the inverse

of batch size |Y|−1
. �erefore by increasing the batch size we

can mitigate the �uctuation issue. For mini-batch SGD, the batch

size is arbitrarily determined and kept constant through the whole

learning process. A wiser strategy would dynamically update this

value as learning proceeds, which is an motivation for our solution

of batch-adaptive SGD.

4 MODEL OF STOCHASTIC LEARNING
PROCESS

In previous section we claimed that the approximate derivative

from a random sample satis�es a Gaussian distribution. Here we

move a step further to model the learning process, or exactly, the

decrease of objective value for each iteration.

4.1 Decrease of Objective Value
Given an objective function F( ®θ ), we may write it in �rst-order

Taylor polynomial at any parameter con�guration, e.g.,
®θ0, as shown

in the equation below.

F( ®θ ) = F( ®θ0) +

d∑
k=1

f ®θ (k )
0

· ( ®θ (k ) − ®θ0

(k )
) + h ®θ0

( ®θ )

= F( ®θ0) + f
T
®θ0

· ( ®θ − ®θ0) + h ®θ0

( ®θ )

(3)

where the
®θ (k ) represents the k-th element in the d-dimension

vector and fT
®θ0

stands for the transpose of the matrix.

Here the function h ®θ0

( ®θ ) is the remainder term whose value is 0

if the variable is close to
®θ0, i.e., lim ®θ→®θ0

h ®θ0

( ®θ ) = 0.

In SGD, model parameter is updated with an estimated gradient

ˆf ®θ0

. With the help of our error-term model in Section 3, or exactly,
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Equation (2), we can express the objective value change as follows.

F( ®θ0 − η ˆf ®θ0

) − F( ®θ0) ≈ fTθ0

(θ0 − η · ˆfθ0
− θ0) = −ηf

T
®θ0

ˆf ®θ0

= −ηfT
®θ0

· (f ®θ0

+

∑
yj ∈Y

®ξ j

|Y|
) = −η · fT

®θ0

f ®θ0

− η · fT
®θ0

· ®εY

(4)

�e �rst term is a constant (for that iteration) and thus the

change only depends on the random variable
®ξ j . With CLT we

know it satis�es a Gaussian distribution ®εY ∼ N(0,
Σ
|Y |
), and thus

the weighted sum of this vector satis�es a one-dimension Gaussian

distribution, i.e., ®εT
Y
· ˆf ®θ0

∼ N(0,
ˆfT
®θ
0

·Σ·ˆf ®θ
0

|Y |
).

Now the only unknown part is the global covariance matrix Σ,

whose unbiased estimation Σ̂ is the adjusted covariance of randomly

sampled batch |Y|.

Σ̂ =
1

|Y| − 1

∑
yj ∈Y

©­­«g
j
®θ0

−

∑
yj ∈Y g

j
®θ0

|Y|

ª®®¬
©­­«g

j
®θ0

−

∑
yj ∈Y g

j
®θ0

|Y|

ª®®¬
T

=

∑
yj ∈Y (g

j
®θ0

− ˆf ®θ0

)(g
j
®θ0

− ˆf ®θ0

)T

|Y| − 1

(5)

4.2 Game of Gaussian Walk with Rebound
Equation (4) shows that for SGD learning algorithm, the decrease

of objective value satis�es a Gaussian distribution where the mean

is determined by the global derivative and the variance is a�ected

by the batch size. Here we abstract the process as a random walk

game with a Gaussian dice.

Particularly, we de�ne the domain of game state as a half closed

set of real numbers [S∗,+∞). �e game starts with a random state

and the goal is to move as close as possible to S∗. For each round,

the player pays money for a Gaussian Dice and moves according to

the resulted Gaussian value.

�e mean of the Gaussian dice is solely determined by the current

state. �e variance is jointly controlled by the state and the player’s

investment. Particularly at state Si , the generated moving steps

satis�es such Gaussian distribution 4si ∼ N

(
µi ,

σ 2

i
m

)
, where the

m ∈ [1,+∞) stands for the player’s investment. �e game thus

ends when the player runs out of the budget.

Connecting this game back to SGD learning, the space of hidden

states represents all possible objective values and the particular

S∗ is thus the minimum objective value that learning can best

achieve. Each state’s parameters are respectively corresponding to

the square sum of the gradient fTθ · fθ and its multiplication with

covariance matrix of noise

√
fTθ · Σ · fθ . Intuitively, the decay m

and transfer speed η are the batch size and learning rate.

�is game of random walk is a continuous Markov process with

in�nite states. Given two state 〈Si , Sj 〉, there are generally two

paths of state transfer, corresponding to two situations during

learning process. We illustrate this scenario in Figure 1. As can be

seen, for convex optimizing, there are usually two ways of transfer

from one state (objective value) to another. For a normal gradient

descent process, the Si is directly decreased to Sj . Alternatively, Si
�rst reaches the minimum point S∗ and then rebounds to Sj .

Figure 1: Illustration of State Transfer in Learning

To put it another way, for state st = Si , let 4st denote the steps

generated by a Gaussian dice N(µi ,
σ 2

i
m ). We de�ne the next state

st+1 can be represented as in Equation (6).

st+1 = |st −S
∗−η4st |+S

∗ =

{
st − η4st , if st − η4st ≥ S∗

2S∗ + η4st − st , otherwise

(6)

In this game se�ing, we can calculate the expected value of next

state given a particular investment. Formally, let st denote the

state at t th
round and µt ,σt respectively stand for the associated

Gaussian dice parameter. Given an investment of m, let pstm (4st )
denote the probability density function for a random moving step

4st ∼ N
(
µt ,

σ 2

t
m

)
. �e expected value of next state can be ex-

pressed as below.

Estm (st+1) =

∫ +∞
−∞

pstm (4st )(|st − S
∗ − η · 4st | + S

∗)d4st

= η

∫ +∞
−∞

pstm (4st )

����4st − st − S
∗

η

����d4st + S∗
= (st − S

∗ − ηµt ) {Φ(a) − Φ(−a)} +
ησt
√
m

√
2

π
e−

a2

2 + S∗

where a =
st − S

∗ − ηµt
ησt

√
m

(7)

�is is a monotonically decreasing function for m. Consider the

case when m → +∞, the Φ(a) − Φ(−a) will converge to either 1

or -1, depending on the sign of a. �e second term will be zero.

�erefore, we have:

lim

m→+∞
Estm (st+1) = sign(a)(st −S

∗−ηµt )+S
∗ = |st −S

∗−ηµt |+S
∗

(8)

To further illustrate Equation (7), we plot the correlation between

state change st −Estm (st+1) and the Gaussian variance σ 2

t in Figure 2,

where other parameters e.g., the batch sizem, the µ, etc. are kept

the same. As can be seen, in low-variance case, state is expected

to become small (i.e., st > Estm (st+1)), but the decrease is bounded,

con�rmed with Equation (8). On the other hand, when variance is

high, the state is expected to increase (i.e., st < Estm (st+1). To avoid

this case, one should increase the batch size m.

With Equation (7), we can evaluate di�erent investment strate-

gies. As illustrated in Figure 3, for a speci�c strategy that returns

an investment mt for a state st , if Estm (st+1) < st , this strategy will

make the player move forward in the game (i.e., state decrease).

On the other hand, if Estm (st+1) > st , the player will step backward
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Figure 2: Correlation between State Change st −Estm (st+1) and
Variance σ 2

t . Note that the x-axis is σ
−1.

Figure 3: �ree Scenarios of an Investment Strategy

in random walk (i.e., state increase). Particularly, if Estm (st+1) = st ,

the player will �uctuate around this state and therefore stay at the

same point in the long run. �is is the stable point of such strategy,

or the expected upper bound performance.

Furthermore, consider the constant-investment strategy that �xes

the investment to a constant value disregard of the game state. In

other words, it is the mini-batch SGD. Formally, we can obtain

de�ne an equation Estm (st+1) − st = 0 for a particular constant

investmentm. If there is a solution for st , then the learning algo-

rithm would �uctuate around this stable point. �is is the potential

limitation of mini-batch SGD.

5 BATCH-ADAPTIVE SGD
Section 4 proposed a random walk game to model the decrease of

objective value with SGD learning. In this game, a larger sample

size decreases the variance of random Gaussian walk, thus lowering

the probability of objective value increase. Intuitively, one may use

maximum sample size (the whole data set) in each iteration so that

the variance is minimized. �is is what Gradient Descent does and

it is time consuming. To obtain a good balance of variance and

time, one may need to choose proper sample size for each iteration.

In this section we consider the following problem: given a limited

budget (total number of samples), what is the best strategy of quota

allocation to achieve minimum expected ending state.

Suppose we have a function that outputs the lowest achievable

state given current state and remaining budget. Let Q(st ,M) denote

the function, we can easily write it in such a recursive form as

Equation (9).

Q(st ,M) = min{Q(Estm (st+1),M −m)|m = 1, 2, · · · ,M} (9)

One may consider Dynamic Programming (DP) to solve the

function. However, it is not realistic in SGD learning. Firstly, run-

ning DP requires an explicit knowledge of future state parameters

〈µt+i ,σt+i 〉, which is unknown. Furthermore, even if we estimate

the parameters, running one DP has a high time cost, especially

when the M is large. Finally, optimal strategy obtained via DP is

only for expected situations. �at means, a�er each model update,

original optimal strategy may not be valid any more and DP has

to be run again. �is is not practical. In this section, we provide

a heuristic strategy that maximizes the e�ciency of decreasing

objective value. �en we discuss how the BA-SGD is developed

based on this strategy.

5.1 MaxDec-E�ciency Strategy
With Equation(7) we can clearly calculate the expected value of next

state. Since it is a monotonic decreasing function of investment,

one straightforward strategy is to invest all budget in the �rst round

to maximize the one-step descent of objective value. Alternatively,

one may only make necessary investment to decrease the objective

value and save the most for future. Table 2 shows a scenario of

game se�ing and the strategy I and II are corresponding to such

two intuitions.

Table 2: Example of Di�erent Strategies

Game se�ing µt = st ,σt ≡ 1,η = 0.1, S∗ = 0,M = 7

s0 = 0.1
Round 1 Round 2 Round 3

m1 Es0

m1
(s1) m2 Es1

m2
(s2) m3 Es2

m3
(s3)

I 7 0.0902 - - - -

II 2 0.0968 2 0.0946 2 0.0930
∗

III 3 0.09296 4 0.0856 - -

∗
�e remaining of 1 budget can not make the state decrease based on Equation (7). So it stops at 3

rd
round.

As can be seen, the strategy I and II ends with state 0.0902 and

0.0930 respectively. Neither of them is be�er than strategy III,

ending with state 0.0856. �e key point is to consider the e�ciency

of investment, i.e., the decrease of state per each investment unit.

Speci�cally, we can de�ne the following utility function based on

an investment and current state s .

u(m, st ) =
st − Estm (st+1)

m
(10)

For each round, the most e�cient investment is the one that

maximize this utility function, i.e.,mopt = arg maxm u(m, st ). Par-

ticularly for the �rst round, we show the state decrease and utility

value with respect to di�erent investment m in Figure 4. As can be

seen, larger investment achieves bigger state decrease. However,

the e�ciency (utility value according to Equation (10)) only grows

from 1 to 3 and then decreases. In that case, for �rst round,m = 3

is the one that achieves maximum return of unit investment. In

the example shown in Table 2, the max-e�ciency strategy gives an

allocation of 3 and 4 for two rounds, i.e., the strategy III, named as

MaxDec-e�ciency Strategy.
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Figure 4: State decrease & Utility of di�erent investmentm

5.2 Algorithm Design
We show the pseudo code of BA-SGD in Algorithm 1. Besides com-

mon input such as data X, initial model parameter
®θ , learning rate

η, the algorithm requires two additional values, i.e., total budget

M and sampling step m0. �e �rst one controls when the learn-

ing stops and the second determines the initial and incremental

batch size. �e algorithm starts with initial sample to estimate

the derivative (line 7) and further the game state st , µt ,σt (line 8).

�en these estimated game parameters are used to calculate the

batch size with MaxDec-e�ciency strategy (line 9). Note that we

arbitrarily set the minimum point S∗ as 0. �e real value of S∗

depends on both data set and adopted objective function. Here we

use a universal lower bound 0 as a safe choice because widely used

objective functions, such as squared error, cross-entropy, etc., are

usually non-negative. Sampling stops when the current sample

is su�cient or if the whole data set is sampled (which makes the

learning to gradient descent). �en the model parameter
®θ and the

remaining budget M are updated. �e training stops when budget

runs out.

Algorithm 1 Batch-Adaptive SGD

1: procedure BA-SGD(X, ®θ ,η,M,m0)

2: whileM > 0 do
3: Y ← ∅

4: repeat
5: random sampleZ from X −Y with |Z| =m0

6: Y ← Y
⋃
Z

7: calculate
ˆf ®θ , Σ̂ with Y . Equation (2) and (5)

8: st ← F( ®θ |Y), µt ← ˆfT
®θ

ˆf ®θ ,σt ←
√

ˆfT
®θ
Σ̂ˆf ®θ /|Y|

9: m∗ ← arg maxm u(m, st ) where S∗ = 0

10: until |Y| ≥ min{m∗, |X|}

11:
®θ ← ®θ − η · ˆf ®θ

12: M ← M − |Y|
13: end while
14: return ®θ
15: end procedure

Particularly, to avoid redundant computation, the approximation

of derivative and covariance matrix (line 7) can be done in a se-

quential manner, keeping record of the sum and self-multiplication

of each individual derivative. Formally, let Y1 and Y2 denote the

old and new sample, derivatives and covariance can be estimated

by the following equation.

ˆf ®θ =

∑
yj ∈Y1∪Y2

g
j
®θ

|Y1 | + |Y2 |
=

∑
yj ∈Y1

g
j
®θ
+

∑
yk ∈Y2

gk
®θ

|Y1 | + |Y2 |

Σ̂ =

∑
yj ∈Y1∪Y2

g
j
®θ

T
g
j
®θ
− (|Y1 | + |Y2 |)ˆf

T
®θ

ˆf ®θ

|Y1 | + |Y2 | − 1

(11)

One may note that the BA-SGD requires extra space of O(d2)

to store the covariance matrix, where d is the dimension of the

model parameter vector. For complex model, e.g., deep neural

network, such cost is quite high. Furthermore, the calculation of

the covariance matrix takes more time with larger d . A practical

tradeo� is assume that model parameters are independent of each

other. �e covariance matrix is then a diagonal one, reducing the

space cost to O(d).

6 EVALUATION
To evaluate the proposed method, we run experiments on multi-

ple data sets and compare its performance with other baselines,

including conventional gradient descent, SGD algorithm, SGD al-

gorithm with �xed learning rate (denoted as Fix-SGD), mini-batch

SGD speci�cally with batch size 50 (SGD-50) and 100 (SGD-100).

6.1 Experiment Setup
�e data sets we use in evaluation come from the published ones

in UCI machine learning repository [21]. Particularly we look for

clearly-described data sets of classi�cation which i) has more than

10,000 instances, ii) has similar number of instances for each class

and iii) has small number of features w.r.t data size. �e second

condition is to avoid imbalanced class problem and the third one

is to avoid sparse feature problem as they are out of this work’s

scope. We end with 9 data sets, denoted as Adult, Bank, Connect-4,

Cover Type, Credit, Le�er Recognition, Sensor, Skin and Teacher. �e

summary is shown in Table 3.

By default we use neural network with one input layer, one

output layer and 2 hidden layers. �e input layer has the same

number of neurons with the data’s feature dimension. �ere are

5 neurons in both hidden layers. �e neuron number in output

layer is one for binary classi�cation and is equivalent to the number

of classes for multi-class classi�cation. Experiments are run on a

single Windows-7(64 bit) machine with dual CPU 2.9 GHz and 8

GB memory with Java Running Environment 1.8.0 65.

6.2 Model Veri�cation
In previous sections we have modeled the stochastic gradient de-

scent as well as the learning process. Here we use the real data to

verify some of their characteristics. �e data set Adult is used for

illustration although we can get similar results in all data sets.

6.2.1 Gaussian Distribution of Gradient’s Square Sum. In the

model of stochastic gradient, we claim that its square sum (
ˆf′θ0

· ˆfθ0
)
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Table 3: Summary of Data Sets

Data Class Feature
∗

size Name in UIC Repo

Adult 2 7 48,842 Adult

Bank [24] 2 24 41,188 Bank Marketing Data Set

Connect-4 3 42 67,557 Connect-4

Cover Type 7 14 581,012 Covertype

Credit [36] 2 23 30,000 default of credit card

clients

Le�er

Recog

26 16 20,000 Le�er Recognition

Sensor 11 48 58,509 Dataset for Sensorless

Drive Diagnosis

Skin [3] 2 3 100,000
+

Skin Segmentation

Teacher 4 16 10,800 Firm-Teacher Clave-

Direction Classi�cation

∗
Feature dimension may be di�erent from raw data since we unfold categorical a�ributes and delete some which have too

many values but for each value there is only a few number of instances.

+
We remove some duplicate synthetic data records.

satis�es a Gaussian distribution on the basis of central limit theo-

rem. Here we verify it by calculating stochastic ones on multiple

sampling with varied sample size. Firstly, we check the raw fre-

quency of sampled values. Speci�cally, with a neural network of

the same con�guration, we pick a random batch of a �xed size (e.g.,

10 or 100) and calculate its gradient. �is process is repeated 5000

times and the frequency is counted for each value.

(a) Sample size 10 (b) Sample size 100

Figure 5: Raw Frequency

Figure 5 shows the histogram of sample gradient with two sample

size. From the statistics of raw frequency count, they look similar to

normal distribution. In the �gure, we can easily see that the sample

value distribute around a red line, which indicates the real value on

global data. Comparing the two �gures with sample size 10 and 100

respectively, we observe that the former one has a wider range of

value, spanning from 20 to 150. �e la�er one has a much narrower

range, from only 50 to 120. �is scenario empirically con�rms the

theory that larger sample size reduces the noise variance.

In next experiment, we sample instances from the data set with

di�erent sample sizes only once and calculate the average of the

individual sample gradient. �en the estimated squared sum of

gradient is computed. �e result is plo�ed in Figure 6a. Again the

red line shows the real value calculated on the whole data. As can

be seen, sample stats (blue crossings) disperse randomly along the

red line. Also, for smaller sample size, it is more likely the sampled

value is far from the real one, suggesting its higher variance.

(a) Average (b) Standard Error

Figure 6: Impact of Sample Size

To further verify the hypothesis of decreasing variance, we re-

peat the sampling 50 times and calculate the standard error of the

sample gradient with regarding to di�erent sample size. With these

pairs of sample size (x ) and standard error (y), We �t a curve in the

form of y ∼ 1√
x

. �e result is shown in Figure 6b. It can be easily

seen that the standard error of sample (blue crossings) decreases

as the sample size increases. Also, these points closely follow the

��ed curve, demonstrating a decreasing trend proportional to the

reverse of sample size’s square root.

6.2.2 Stable Point of SGD. Recall in modeling of learning pro-

cess we claim that there may be stable point for constant investment

strategy. In simulated game we can explicitly obtain it by solving

the equation. Particularly we set S∗ = 0, and for all states st ,

µt ≡ st ,σt ≡ 1. Under such game design, the correlation between

stable point and the choice of batch size m is shown in Figure 7a.

As can be seen from the �gure, for a �xed learning rate η, the stable

point is decreasing with the increase ofm. For the same value ofm,

on the other hand, the stable point is positively associated with the

learning rate η. �ese two observations reveal that for unlimited

rounds, bigger investment with smaller learning rate will always

end with be�er performance.

In real learning, we show the stable point via an indirect way.

Speci�cally we run the gradient-descent algorithm in the whole data

set. For each iteration, before updating the model with whole data

set, we run SGD algorithm to update a copy of the current model

and calculate the resulted decrease of objective value. �is process

is repeated several times and the average decrease is recorded. �e

positive value indicates the adoption of the SGD will make the

objective value decrease and the learning will move forward, vice

versa. As the learning proceeds, we can estimate the potential

performance of SGD algorithm at di�erent objective value levels.

We display the results in Figure 7, where Figure 7b is the original

�gure and Figure 7c and 7d are the zoomed-in of the original one.

�e x-axis represents the learning iterations of gradient descent

(GD), where larger value indicates lower objective value. �e y-axis

represents the decrease of objective value for a single iteration.

�ere are mainly two observations. Firstly, in all three �gures

we can see that from some point the SGD-based algorithms have

negative decrease (below the black horizontal line), indicating the

objective value would increase if such learning algorithm were
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(a) Simulation (b) Original (c) Zoom-in (d) Further Zoom-in

Figure 7: Veri�cation of Stable Point for SGD.�e x-axis represents the learning iterations of gradient descent (GD).�e y-axis
represents the decrease of objective value for a single iteration.

adopted. �is observation con�rms the existence of stable point for

SGD with constant batch size. Secondly, by comparing the three

�gures we can see that the negative value of SGD-100 appears later

than SGD-50 and SGD-1. It thus suggests the larger batch size has

a smaller stable point. �is observation con�rms the simulation

result in Figure 7a.

6.3 General Comparison
In this experiment, we evaluate the optimal value each learning

algorithm achieves on the same data set, given the limited quantity

of data instance. Due to di�erent sizes of data sets, we use the

concept of epoch as the measure of the quantity. Given a data set,

one epoch represents the instance number equivalent to the data

size. Similarly, two epochs stand for twice the total instance number

and 0.2 epoch means 20% of the whole set. Furthermore, to know

exactly the real cost value during learning, we run experiments in

a “monitoring mode”. �at means, for SGD-based algorithms, we

temporarily stop the learning process and compute the cost value

on the whole data set as learning proceeds.

With such monitored training logs, we evaluate di�erent algo-

rithms in terms of two metrics, i.e., descent e�ciency and update
e�ciency, de�ned in the equation below.

descent e�ciency =
1 −

ct
c0

Nt

update e�ciency =
1 −

ct
c0

t

(12)

where c0 and ct denote the objective value at beginning and at t th

iteration, Nt stands for the scanned data (in units of epoch) so far.

�e �rst one is de�ned as the descent of the objective value over

quantity of data scanned in training. It measures how e�cient

the learning algorithm makes use of training data. �e higher the

value is, the be�er the algorithm will be. �e gradient descent

(GD) algorithm is the lower bound since it scans the whole data to

decrease the objective value in a single iteration.

�e second metric evaluates how e�cient the algorithm updates

the model. Note that the number of iteration is equivalent to the

number of model parameter updates. �is metric is important for

update-costly environment. For instance, in the parallel framework,

updated model parameters need to be distributed to all peer ma-

chines for the next learning iteration. If update is too frequent,

there will be too much communication burden for model synchro-

nization, which leads to a long delay. At this metric, again a larger

value indicates higher e�ciency. Obiously the gradient descent

algorithm is the upper bound as it requires minimum model update

during learning.

Figure 8a shows the descent e�ciency as learning proceeds. As

can be seen, compared to the slow learning speed of gradient de-

scent method, the SGD-based ones are much faster. �is observation

makes sense. �e conventional gradient descent method update the

model once scanning the whole data set while SGD method does

with only a small sample. �erefore the la�er one decrease quickly

in an early stage. Note that our method curve overlaps with other

SGDs’, demonstrating its equivalent e�ciency in learning.
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Figure 8: General Comparison

Figure 8b shows the update e�ciency of di�erent learning algo-

rithms with regarding to epochs. In general, the update e�ciency

shows a decreasing trend. �is is normal. As learning proceeds, the

model is closer and closer to optimum se�ing, making the margin

of objective value decrease smaller and smaller. �us the update

e�ciency is reduced. Also, we observe that all SGD-based method

except ours decrease sharply. �is observation is due to the high

frequency of update and li�le improvement of the model. Moreover,

the mini-batch SGD (SGD-50 and SGD-100) has a higher e�ciency

than SGD because update based on a batch instead of a single data

sample can reduce the update frequency. �e conventional gradient

descent achieves highest e�ciency because of its low number of

update and slow decrease of objective value. Our BA-SGD falls

between the two. On one hand, unlike other SGD methods, BA-

SGD makes wise choice of when to update the model, depending

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1282



on the gradient’s signi�cance on the current sample. On the other

hand, since BA-SGD has a faster convergence speed, as shown in

Figure 8a, the e�ciency is lower than gradient descent.

To sum up, in this experiment we demonstrate that our BA-SGD

learning algorithm achieves equivalent convergence rate as other

SGD methods, which is much faster than conventional gradient

descent method. On the other hand, the BA-SGD has a relatively

higher update e�ciency than other SGD-based algorithm, making

it rather competitive in parallel learning framework where the cost

of model update and synchronization is quite high.

For speci�c data set, we show the �nal objective value of di�erent

learning methods in Table 4 a�er training with 20 epoch as budget.

As can be seen, scanning the same amount of data instances, the

gradient descent algorithm has highest objective value in all data

sets, suggesting its slow learning speed compared to SGD-based

algorithms. Also, our BA-SGD algorithm achieves lowest objective

value in 7 data sets. For other 2, except skin, its objective value

is close to the one with best performance. �e dataset skin seems

to be a di�erent case, where the Fix-SGD achieves signi�cantly

lower objective value than other SGD-based ones. �is dataset con-

tains randomly generated data for non-skin classes. �is synthetic

method may result in low noise in the data, making the Fix-SGD

rather e�cient in learning.

6.4 Impact of Noise

Figure 9: Noise Demonstration in Real Data

To further illustrate the impact of noise on the learning perfor-

mance, we run gradient descent learning on all data sets and for

each iteration log the value of derivative squared sum µ = fT
®θ
· f ®θ

as well as the determinant of the covariance matrix |Σ|. �e pair

of such values are plot in Figure 9. �e x-axis is fT
®θ
· f ®θ while the

y-axis is |Σ|. �at means higher position corresponds larger scale

of derivative noise. Particularly we use red to label data where BA-

SGD achieves best performance as in Table 4 and blue for others.

As can be easily seen, the blue markers (i.e., Credit and Skin) are

below red ones.

We also run simulation of random walk game controlling the

value of σ for the Gaussian dice. Compared strategies include con-

stant investment withm ≡1, 5 & 10 and the MaxDec-E�ciency. �e

result is shown in Figure 10. As can be seen, given the same budget

quantity, strategies of smaller constant investment reaches lower

state when game ends. As noise scale increases, strategies of bigger

constant investment performs be�er. Also, the MaxDec-E�ciency

strategy is best among all cases. �is is not consistent with re-

sults on real data. �e reason is that in real learning scenario, the

BA-SGD needs to have an initial sample to estimate statistics such

as objective value, derivative and covariance matrix. In random

walk game simulation, however, this information is explicitly and

accurately given. Such initial sample (e.g., in experiment we set to

50) has to be larger than 1, making it less e�cient than Fix-SGD

algorithm when noise scale is small in the data set.

Figure 10: Impact of Noise in Simulation

7 CONCLUSION AND FUTUREWORK
In this work we develop a batch-adaptive SGD (BA-SGD) learning

algorithm which can dynamically determine the batch size during

each learning iteration. With support of the central limit theorem

and statistic con�dence interval, the algorithm has a good estima-

tion of the risk when approximating gradient and can determine

whether it needs more sample to reduce variance or proceed to

update the model. As experiment shows, the BA-SGD achieves a

convergence rate that is as fast as other SGD-based algorithms. At

the same, it is more robust against noise.

BA-SGD algorithm provides an example of combining statistic

theory with machine learning practice, worth further exploring.

Also, there is quite a few arbitrary choice in the current version

(e.g., initial sample size), which can be further improved by some

advanced estimation techniques. we plan to study it in future work.
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Table 4: Objective Value

Data

Adult Bank Connect-4 Cover Type Credit Le�er Rec. Sensor Skin Teacher

BA-SGD 0.5040 0.3534 0.3116 2.0070 0.1683 3.3375 1.9249 0.1464 0.9084
SGD-100 0.5404 0.3562 0.4708 2.0773 0.1658 3.7909 3.3680 0.1469 1.3659

SGD-50 0.5378 0.3557 0.4681 2.0639 0.1651 3.7976 3.3246 0.1451 1.3556

SGD 0.5795 0.3543 0.4713 2.3864 0.1628 3.8857 3.6366 0.1433 1.7368

Fix-SGD 0.6624 0.4190 0.4339 6.0445 0.1577 4.1610 3.2110 0.0030 3.8869

Gradient Descent 0.9569 0.7078 0.7916 4.2286 0.3700 10.9911 5.8926 0.5546 2.9549
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